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Abstract

I present an introductory discussion of the BFKL approach to the theoretical
description of QCD processes at high energy and fixed (not growing with energy)
momentum transfers. The role of the gluon Reggeization which determines the
multi–Regge form of QCD amplitudes with gluon exchanges is emphasized. The
region of applicability of the BFKL approach is discussed and the BFKL represen-
tation of elastic scattering amplitudes with quantum numbers different from the
gluon ones is derived.

1 Introduction

The BFKL equation [1]-[4] became famous owing to the prediction of the rapid growth of
the γ∗p cross section at increasing energy afterwards discovered experimentally. There-
fore BFKL is usually associated with the evolution equation for the unintegrated gluon
distribution. The parton distributions serve now as the inherent part in the theoretical
description of hard QCD processes. In hadron collisions cross sections of processes with
a hard scale Q2 are given by the convolution

dσAB(s) =
∑

a,b

∫ 1

0
dxa

∫ 1

0
dxbf

a
A(xa, Q

2)f b
B(xb, Q

2)σ̂ab(xaxbs,Q
2) , (1)

where s is the squared total energy in the c.m. system, fa
A(x,Q2) is the density of the

probability to find the parton a in the hadron A carrying a fraction x of its momentum
and σab(xaxbs,Q

2) is the partonic cross section. Evolution of the parton distributions

with τ = ln
(
Q2/Λ2

QCD

)
is determined by the DGLAP [5]-[9] equations:

d

dτ
fa

A(x,Q2) =
αs(Q

2)

2π

∑

b

∫ 1

x

dz

z
P a

b (
x

z
)f b

A(z,Q2) , (2)

where P b
a(z) are the parton splitting functions. The DGLAP equations are discussed in

detail in the lectures of Alan Martin [10]. They permit to sum the terms strengthened in
each order of perturbative series by powers of lnQ2. These logarithms are called collinear
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since they are picked up from the region of small angles between parton momenta. There
are logarithms of another kind, which are called soft ones, arising at integration over
ratios of parton energies. These logarithms are present both in parton distributions and
in partonic cross sections. At small values of the ratio x = Q2/s the soft logarithms
appear to be even more important than the collinear ones.

At small x dominant partons are gluons. The equation describing evolution of the
unintegrated gluon distribution F(x,~k) with change of ln(1/x) has the structure

∂F

∂ ln(1/x)
= K

⊗
F , (3)

where K is the BFKL kernel and
⊗

means convolution with respect to transverse mo-
menta. Originally the kernel was found in the leading order (LO). The equation with this
kernel permits to sum the leading terms (αS ln(1/x))n. The summation leads to rising
cross sections

σ ∼ sωP , ωP = 4Nc
αs

π
ln 2 . (4)

Just this result brought fame to the BFKL equation since the sharp rise of the proton
structure function with decreasing x was discovered in the experiments on deep inelastic
e− p scattering at HERA [11].

But the region of applicability of the BFKL approach is much wider. The approach
gives the description of QCD scattering amplitudes in the region of large s and fixed
momentum transfer t, s≫ |t| (Regge region), with various colour states in the t-channel.
The evolution equation for the unintegrated gluon distribution appears in this approach as
a particular result for the imaginary part of the forward scattering amplitude (t = 0 and
vacuum quantum numbers in the t-channel). It is worthwhile to add that the approach
was developed, and is more suitable, for the description of processes with only one hard
scale, such as γ∗γ∗ scattering with both photon virtualities of the same order, where the
DGLAP evolution is absent.

The leading logarithmic approximation (LLA) can provide only qualitative predictions,
because it does not fix neither scale of energy nor scale of transverse momenta entering
in strong coupling αs(k⊥). They can be determined in the next-to-leading approximation
(NLA), when the terms αS(αS ln(1/x))n are resummed. Therefore the normalization of
cross sections and the exponent ωP in (4) called Pomeron intercept can be fixed only in
the NLA.

Evidently the power growth (4) of cross sections violate the Froissart bound [12]

σtot < const(ln s)2 (5)

following from the unitarity. The violation of the Froissart bound can not be removed
by calculation of radiative corrections at any fixed NNN...NL order and requires other
methods. The most popular now are non-linear generalizations of the BFKL equation,
related to the idea of saturation of parton densities [13]. The saturation is discussed in
details in the lectures of Al Mueller [14] and Edmond Iancu [15]. A general approach to
the unitarization problem is reformulating of QCD in terms of a gauge-invariant effective
field theory for the Reggeized gluon interactions [16].
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2 The gluon Reggeization

The basis of the BFKL approach is the gluon Reggeization. The notion Reggeization
of elementary particles in perturbation theory was introduced in [17]. In terms of the
relativistic partial wave amplitude Aj(t), analytically continued to complex j values, it
means that the non analytic (proportional to Kroneker delta-symbols) terms, arising in
the Born approximation on account of one-particle exchanges in the t–channel, disappear
as a consequence of radiative corrections. In other words, Reggeization of an elementary
particle with spin j0 and mass m means that at large s and fixed t Born amplitudes with
exchange of this particle in the t–channel acquire the factor sj(t)−j0 , with j(m2) = j0,
as a result of radiative corrections. This phenomenon was discovered for the first time
in QED in the backward Compton scattering [17]. It was called Reggeization because
just such form of amplitudes is given by the Regge poles – moving poles in the complex
angular momentum plane (j–plane) introduced by T.Regge [18]; therefore these poles are
called Regge poles (Reggeons), and the functions j(t) are called the Regge trajectories.
The value j(0) is called the intercept, and the derivative j′(0) is called the slope of the
trajectory.

For relativistic particles the theory of complex angular momenta was developed by
V.N. Gribov. This theory had outstanding significance in the elementary particle physics.
In the sixties of the last century it was the main and almost unique tool of the theoretical
analysis of strong interactions. The Regge-Gribov theory is expanded in the lectures of
Peter Landshoff [19] and Enrico Predazzi [20] . Remind that as compared with ordinary
particles Reggeons possess an additional quantum number, the signature. The fundamen-
tal role in the Gribov theory belongs to the Reggeon with vacuum quantum numbers and
positive signature (parity under s ↔ u exchange), which is called Pomeron in honour of
outstanding Soviet physicist I. Ya. Pomeranchuk. The Pomeron determines behaviour of
total cross sections at high energy. Originally it was introduced (with the intercept equal
unity) [21], [22] to provide constant cross sections at asymptotically large energy. Very
important and intriguing is also another Reggeon, differing from the Pomeron by C and
P–parity and called Odderon [23], [24]. The Odderon is responsible for the difference of
particle–particle and particle –antiparticle cross sections.

QCD is an unique theory where all elementary particles Reggeize. In contrast to QED,
where the electron does Reggeize in perturbation theory [17], but the photon remains
elementary [25], in QCD the gluon does Reggeize [26]-[28], [1], [2] as well as the quark
[29], [30]. The Reggeization is very important for the theoretical description of high energy
processes with fixed momentum transfers. Especially important is the gluon Regeization,
because non-decreasing with energy cross sections are provided by gluon exchanges. In
each order of perturbation theory amplitudes with negative signature do dominate, owing
to cancelation of the leading logarithmic terms in amplitudes with positive signature
(which are pure imaginary in the LLA due to this cancelation). Therefore the primary
Reggeon in QCD turns out to be the Reggeized gluon, which has negative signature. The
Pomeron and the Odderon emerge as compound states of two and three Reggeized gluons
respectively.

The gluon Reggeization determines the form of QCD amplitudes at large energies and
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limited transverse momenta. At that the process A+B → A′+B′ with the gluon quantum
numbers in the t-channel can be depictured by the diagram of Fig.1 and its amplitude
has the Regge form

AA′B′

AB =
s

t
Γc

A′A

[(
−s

−t

)ω(t)

+
(

+s

−t

)ω(t)
]

Γc
B′B , (6)

which is valid in the NLA as well as in the
pA pA′

pB pB′

Figure 1: The process A+B → A′+B′

with the gluon quantum numbers and
negative signature. The zig-zag line
represent Reggeized gluon exchange.

LLA. In (6) s = (pA + pB)2; ω(t) is called
gluon trajectory (in fact the trajectory is j(t) =
1 + ω(t)), c is a color index and Γc

P ′P are the
particle-particle-Reggeon (PPR) vertices which
do not depend on s. Notice that the form (6)
represents correctly the analytical structure of
the scattering amplitude, which is quite simple
in the elastic case.

The gluon Reggeization determines the form
not only elastic, but also inelastic amplitudes in
the multi-Regge kinematics (MRK), which is the
most important at high energy. We call MRK
the kinematics where all particles have limited
transverse momenta and are combined into jets
with limited invariant mass of each jet and large
(growing with s) invariant mass of any pair of

the jets. This kinematics gives dominant contributions to cross sections of QCD processes.
At that in the LLA each jet is actually one particle. In the NLA one of jets can contain a
couple of particle. Such kinematics is called also quasi multi-Regge kinematics (QMRK).
We use the notion of jets and extend the notion of MRK, so that it includes the QMRK,
in order to unify consideration.

In perturbation theory the MRK amplitudes are determined by gluon exchanges in
channels with fixed transferred momenta. Despite of a great number of contributing
Feynman diagrams it turns out that in the MRK these amplitudes have a simple factorized
form. Quite uncommonly that radiative corrections to these amplitudes don’t destroy this
form, but give only simple Regge factors. At that the form (6) remains valid for the case
when A′ or B′ represent jets. In this case the PPR vertices Γc

A′A and Γc
B′B are the effective

vertices for A → A′ and B → B′ transitions owing to interactions with the Reggeized
gluons.

For consideration of the MRK kinematics it is suitable to use the Sudakov decompo-
sition of momenta. For any momentum p the decomposition looks as

p = βp1 + αp2 + p⊥ , (7)

where p1 and p2 are the light-like vectors,

(p1 + p2)
2 = 2p1p2 = s , p2 = sαβ + p2

⊥ = sαβ − ~p 2 . (8)

Here and below the vector sign is used for components of momenta transverse to the p1, p2

plane. For high energy collision of particles A and B with momenta pA and pB we can
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choose p1 and p2 in the pA, pB plane, so that

pA = p1 +
(
m2

A/s
)
p2 , pB = p2 +

(
m2

B/s
)
p1 , (pA + pB)2 ≃ s = 2p1p2 . (9)

Let us consider production of n + 1 jets: A+ B → A′ + J1 + ...+ Jn +B′ (see Fig.2).
If we denote momenta of the jets of the jets ki, i = 0 ÷ n + 1,

ki = βip1 + αip2 + ki⊥ , sαiβi = k2
i − k2

i⊥ = k2
i + ~k 2

i , (10)

then we have

1/s ∼ α0 ≪ α1 . . .≪ αn ≪ αn+1 ≃ 1 , 1/s ∼ βn+1 ≪ βn . . .≪ β1 ≪ β0 ≃ 1 . (11)

Eqs. (10) and (11) secure that the squared invariant masses of neighboring jets

si = (ki−1 + ki)
2 ≈ sβi−1αi =

βi−1

βi
(k2

i + ~k 2
i ) (12)

are large in comparison with the squared transverse momenta

si ≫ ~k2
i ∼| ti |=| q2

i | , (13)

where
ti = q2

i ≈ q2
i⊥ = −~q 2

i , (14)

and their product is proportional to s:

n+1∏

i=1

si = s
n∏

i=1

(k 2
i + ~k2

i ) . (15)

Dominating in each order of perturbation theory amplitudes can be presented by Fig.2.
Multi-particle amplitudes have a complicated analytical structure. It is not simple even

in the MRK (see, for instance,[31], [32]). Fortunately, only real parts of these amplitudes
are used in the BFKL approach in the NLA as well as in the LLA. Restricting ourselves
to the real parts (although it is not explicitly indicated below) we can write (see [33] and
references therein)

AA′B′+n
AB = 2sΓc1

A′A




n∏

i=1

1

ti
γJi

cici+1
(qi, qi+1)



 si√
~k2

i−1
~k2

i




ω(ti)




1

tn+1



 sn+1√
~k2

n
~k2

n+1




ω(tn+1)

Γ
cn+1

B′B ,

(16)
where the vertices Γa

A′A and Γb
B′B are the same as in (6), and γJi

cici+1
(qi, qi+1) are the

Reggeon-Reggeon-particle (RRP) vertices, i.e. the effective vertices for production of jets
Ji with momenta ki=qi − qi+1 in collisions of Reggeons with momenta qi and −qi+1 and
colour indices ci and ci+1. Actually in the LLA only one gluon can be produced in the
RRP vertex; in the NLA a jet can contain two gluons or qq̄ pair. Pay attention that we
have taken definite energy scales in the Regge factors in Eq. (16) as well as in Eq. (6).
In the LLA the energy scales are not important at all. In the NLA we could take, in
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A

B

A′

B′

q1

qi

qi+1

qn+1

J1

Ji

Jn

1

Figure 2: Schematic representation of the process A+B → A′ + J1 + . . .+ Jn +B′ in the
MRK. The zig-zag lines represent Reggeized gluon exchange; the black circles denote the
Regeon vertices; qi are the Reggeon momenta; ci are the colour indices.

principle, an arbitrary scale sR; in this case the PPR and RRP vertices would become
dependent on sR. Of course, physical results must be scale-independent.

For brevity in the following we call the forms (6) and (16) Reggeized forms, and
talking about the gluon Reggeization we mean these forms. The gluon Reggeization
hypothesis is extremely powerful since an infinite number of amplitudes is expressed in
terms of the gluon Regge trajectory and several Reggeon vertices. In the LLA the gluon
Reggeization was proved in [34] (see also [35]). Now it is proved in the NLA as well (see
[36] and references therein). The proof is based on the ”bootstrap” relations, required by
compatibility of the gluon Reggeization with the s-channel unitarity. It turns out that
fulfillment of all these relations ensure the Reggeized form of energy dependent radiative
corrections order by order in perturbation theory. It is quite nontrivial, that an infinite
number of the bootstrap relations for the multi- particle production amplitudes can be
fulfilled if the Reggeon vertices and trajectory satisfy several bootstrap conditions. All
these conditions are derived and are proved to be satisfied.

3 Fixed order calculations

The idea of the gluon Reggeization arose as the result of the fixed order calculations in
non-Abelian gauge theories with spontaneously broken gauge invariance [2], [28]. The
dispersion method of calculations based on unitarity and analyticity suggested in [28]
and developed in [2] appeared to be very effective. It greatly simplifies calculations of
even Born amplitudes, which can be easily found using the t-channel unitarity. For
elastic scattering amplitudes AA′B′

AB (s, t) the t-channel discontinuities are presented by
Fig.4, where the dash line representing the t-channel discontinuity means the substitution

1

t+ i0
→ −2πiδ(t) (17)
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in the gluon propagator. The straight lines can represent both quarks and gluons.

Note that in order to preserve usual analytical
pA

pB

pA′

pB′

1

Figure 4: The t-channel discontinuity
of the amplitude of the process A+B →
A′ +B′.

properties of the amplitude we have to use co-
variant gauges for intermediate gluons. We will
use the Feynman one. In the Regge region it is
convenient to exploit the substitution

gµν →=
2

s
pµ

2p
ν
1 (18)

for the tensor gµν in the numerator of the gluon
propagator between vertices with indices µ and
ν and momenta close to p1 and p2 correspond-
ingly. It is possible because in the decomposition

gµν =
2

s
(pµ

2p
ν
1 + pµ

1p
ν
2) + gµν

⊥ (19)

the last two terms give negligible contributions. Therefore we obtain

2iℑtA
A′B′

AB (s, t) = −4πisδ(t)Γc
A′AΓc

B′B , (20)

where ℑt denotes the t-channel imaginary part and the vertices Γc
A′A and Γc

B′B are the
gluon interaction vertices with the gluon colour index c and polarization vectors ip2/s and
ip1/s correspondingly. Renormalizability of the theory requires decreasing with t terms
of order s, so that (20) unambiguously determines the amplitude:

AA′B′

AB (s, t) =
2s

t
Γc

A′AΓc
B′B . (21)

From comparison with (6) one can see that in fact the vertices Γc
A′A and Γc

B′B are the
RRP vertices in the LO, i.e. the RRP vertices can be easily found assuming the form (6).
In the helicity basis all these vertices have identical form:

Γc
P ′P = gT c

P ′P δλP ′λP
, (22)

where T c
P ′P represent now the matrix elements of the colour group generators in cor-

responding representations and λ-s are helicities of the partons. Except for a common
coefficient the vertices (22) can be written without calculations, because they are given
by forward matrix elements of the conserved current. In (22) the s-channel helicity con-
servation is explicitly exhibited. Note that for gluons and massive quarks it is valid only
in the LO.

It is easy to rewrite (22) in terms of Dirac spinors for quarks and physical polarization
vectors for gluons. The vertex for q(p) → q(p′) transition with momenta p and p′ having
predominant components along p1 can be presented as

Γc
Q′Q = gū(p′)tc

p/2

2pp2
u(p) , (23)
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where tc are the colour group generators in the fundamental representation; for antiquarks
correspondingly

Γc
Q̄′Q̄ = −gv̄(p)tc

p/2

2pp2
v(p′) . (24)

The vertices for gluon transitions acquire a simple form in physical gauges. For gluons
with predominant components of momenta along p1 we’ll use physical polarization vectors
e(p)p2 = 0 in the light-cone gauge e(p′)p2 = 0 , so that

e(p) = e(p)⊥ −
(e(p)⊥p⊥)

p2p
p2 , e(p′) = e(p′)⊥ −

(e(p′)⊥p
′
⊥)

p2p′
p2 , (25)

and
Γc

G′G = −g(e∗(p′)⊥e(p)⊥)T c
G′G , (26)

with the colour generators in the adjoint representation. For momenta with predomi-
nant components along p2 we have to replace in these formulas p2 → p1 (evidently, this
replacement in (25) means change of the gauge).

Dispersion approach requires knowledge of production amplitudes in the MRK. Again
in the Born approximation they can be calculated in the LO without large efforts using
the t-channel unitarity. In the LO only gluons can be produced. Amplitudes AA′GB′

AB are
calculated using the t1 and t2-channel discontinuities. Schematically they are presented in
Fig.5, where the Reggeized form (6) of the 2 → 2 amplitudes must be taken in the lowest
order, so that it is given by (21), evidently with the substitutions s → s2 = (p′B + k)2 =
(pB + q1)

2, t → t2 in the case of Fig.5a and s→ s1 = (p′A + k)2 = (pA − q2)
2, t → t1 in

the case of Fig.5b. The bla

pA pA′

k

pB pB′

a

pA pA′

k

pB pB′

b

Figure 5: Schematic representation of the discontinuities of the A + B → A′ + G + B′

amplitude in the t1 (a) and t2 (b) channels.

Here we meet a complication. Till now the gluon-gluon-Reggeon vertices were defined
only for physical gluon polarizations. But in order to use the Feynman gauges in the
amplitudes of Fig.5 it is necessary to have the vertices in the gauge invariant form. It
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is easy to see that the required form can be obtained from (26) by the substitution
(e

′∗ ≡ e∗(p′), e ≡ e(p))

(e
′∗
⊥e⊥) → (e

′∗e) −
1

(pip)

(
(pie

′∗)(p′e) + (pe
′∗)(pie)

)
+

(pp′)

(pip)2
(pie

′∗)(pie) , (27)

where pi = p2 (pi = p1) for the gluons with predominant components of momenta along
p1 (p2), so that (pip) ≃ (pip

′) ≫ (pp′). Using the vertices in the covariant form, one
can easily find the contributions Aa and Ab with the discontinuities corresponding to the
diagrams Fig.5a and Fig.5b:

Aa = 2sΓc1
A′A

1

t1
gT c

c1c2e
∗
µ(k)

(

−qµ
1 − qµ

2 + 2pµ
1

kp2

p1p2
− pµ

2 (
q2
2

kp2
+ 2

kp1

p1p2
)

)
1

t2
Γc2

B′B , (28)

Ab = 2sΓc1
A′A

1

t1
gT c

c1c2e
∗
µ(k)

(

−qµ
1 − qµ

2 + pµ
1(
q2
1

kp2
+ 2

kp2

p1p2
− 2pµ

2

kp1

p1p2

)
1

t2
Γc2

B′B . (29)

Here k = q1 − q2, e(k) and c are the gluon momentum, polarization vector and colour
index. It is easy to see that the amplitude AA′GB′

AB

AA′GB′

AB = 2sΓc1
A′A

1

t1
γc

c1c2(q1, q2)
1

t2
Γc2

B′B , (30)

with
γc

c1c2(q1, q2) = gT c
c1c2e

∗
µ(k)Cµ(q2, q1), (31)

Cµ(q2, q1) = −qµ
1 − qµ

2 + pµ
1(
q2
1

kp1
+ 2

kp2

p1p2
) − pµ

2 (
q2
2

kp2
+ 2

kp1

p1p2
)

= −qµ
1⊥ − qµ

2⊥ −
pµ

1

2(kp1)
(k2

⊥ − 2q2
1⊥) +

pµ
2

2(kp2)
(k2

⊥ − 2q2
2⊥) , (32)

has correct discontinuities both in the t1 and t2 channels. It means that it is correct
amplitude, because contributions ∼ s without singularities in the t1 and t2 channels
are forbiden by the renormalizability. Therefore the vertex (31) is in fact the Reggeon-
Reggeon-Gluon vertex. In the LO it is the only RRP vertex.

Note that the vertex is gauge invariant: Cµ(q2, q1)kµ = 0. In the physical light cone
gauges the vertex simplifies. In the gauge e(k)k = e(k)p2 = 0

e∗µ(k)Cµ(q2, q1) = −2e∗⊥(k)

(

q1⊥ − k⊥
q2
1⊥

k2
⊥

)

, (33)

and in the gauge e(k)k = e(k)p1 = 0

e∗µ(k)C
µ(q2, q1) = −2e∗⊥(k)

(

q2⊥ + k⊥
q2
2⊥

k2
⊥

)

. (34)

Thus assuming the gluon Reggeization the LO Reggeon vertices are found without no-
ticeable efforts. It is quite easy also to find in the LO the gluon trajectory. To do this it is
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sufficient to find the lowest order contribution to the s–channel discontinuity of some elas-
tic amplitude with negative signature and to compare it with (6). Of course, the trajectory
must be process-independent. This requirement serves as a check of self-consistency of
the Reggeization hypothesis.

In the lowest order only two-particle intermediate states do contribute in the unitarity
relation:

ℑsA
A′B′

AB =
1

2

∑

Ã,B̃

∫
AÃB̃

AB

(
AÃB̃

A′B′

)∗
dΦÃB̃ (35)

where ℑs stands for the s -channel imaginary part,
∑

Ã,B̃ means sum over discrete quantum
numbers of the intermediate particles, dΦÃ,B̃ is the element of their phase space:

dΦÃ,B̃ = (2π)DδD(pA + pB − pÃ − pB̃)
dD−1pÃ

(2π)D−12ǫÃ

dD−1pB̃

(2π)D−12ǫB̃
. (36)

Here and in the following D = 4 + 2ǫ is the space-time dimension taken different from 4
for regularization of infrared, collinear and ultraviolet divergences. Using (21) and

δD(p) =
2

s
δ(α)δ(β)δD−2(p⊥) ,

dD−1p

(2π)D−12ǫ
= δ(p2 −m2)dDp, dDp =

s

2
dαdβ

dD−2p⊥
(2π)D−1

, p2
Ã
≃ sαÃ, p2

B̃
≃ sβB̃, (37)

we obtain

ℑsA
A′B′

AB = s
∑

Ã

Γc
ÃAΓc′

A′Ã

∑

B̃

Γc
B̃BΓc′

A′Ã

1

(2π)(D−2)

∫ dD−2q1
~q 2
1 (~q − ~q1)2

. (38)

Account of the signature means anti-symmetrization in the colour indices in the first (or
second) sum. The commutation relations of the colour group generators give

1

2

(
Γc

ÃA
Γc′

A′Ã
− Γc′

ÃA
Γc

A′Ã

)
= −i

g

2
fcc′aΓ

a
A′A, −i

g

2
fcc′aΓ

c
B̃B

Γc′

B′B̃
= −g2Nc

4
Γa

B′B, (39)

where fcc′a are the group structure constants, fcc′afcc′b = Nc, Nc in the number of colours.
Comparing (38) with account of (39) with (6) we obtain

ω(t) =
g2Nct

2(2π)D−1

∫
dD−2q1

~q 2
1 (~q − ~q1)2

= −g2NcΓ(1 − ǫ)

(4π)D/2

Γ2(ǫ)

Γ(2ǫ)
(~q 2)ǫ .

Thus, we see that assuming the gluon Reggeization all the Reggeon vertices and the
Regge trajectory can be easily obtained in the LO. To find the vertices it is sufficient to
calculate elastic and one-gluon production amplitudes in the Born approximation; to find
the trajectory it is enough to calculate in the lowest order the s-channel discontinuity of
some elastic scattering amplitude.

Originally the Reggeised form of elastic amplitudes was established in the LO in two
loops [28]. The three-loop calculations [2] confirmed this form and permitted to formulate
the Reggeization hypothesis for inelastic amplitudes.

Now the vertices and the trajectory are known in the NLO. Of course, in this order
neither the calculation, nor the results are not so simple as in the LO. To find the PPR
vertices one has to calculate non-logarithmic terms in one-loop elastic amplitudes; to
obtain the RRG vertex it is necessary to compute with such accuracy a gluon production
amplitude in the MRK.

10



4 BFKL equation

The gluon Reggeization gives the amplitudes with the gluon quantum numbers and neg-
ative signature. Other amplitudes are found in the BFKL approach from the s–channel
unitarity. In the unitarity relations the contribution of order s, which we are interested in,
is given by the MRK. Large logarithms come from integration over longitudinal momenta
of the produced jets. In the LLA, where production of each additional particle must give
the large logarithm (ln s), each jet is in fact a gluon. For elastic amplitudes we have (see
Fig.6)

ℑsA
A′B′

AB =
1

2

∞∑

n=0

∑

{f}

∫
AÃB̃+n

AB

(
AÃB̃+n

A′B′

)∗
dΦÃB̃+n, (40)

pA

pB

pA′

pB′

q1

qi

qi+1

qn+1

q′1

q′i

q′i+1

q′n+1

Σn

Figure 6: The s-channel discontinuity of the amplitude of the process A +B → A′ +B′.

where
∑

{f} means sum over discrete quantum numbers of the intermediate particles, the

amplitudes AÃB̃+n
AB and

(
AÃB̃+n

A′B′

)
are defined by (16) and dΦÃ,B̃+n is the element of the

phase space volume,

dΦÃB̃+n =
2

s
(2π)Dδ(1 +

m2
A

s
−

n+1∑

i=0

αi)δ(1 +
m2

B

s
−

n+1∑

i=0

βi)

×δ(D−2)(
n+1∑

i=0

ki⊥)
dβn+1

2βn+1

dα0

2α0

n∏

i=1

dβi

2βi

n+1∏

i=0

dD−2ki⊥

(2π)D−1
. (41)

In the integrand of (40) dependence on the longitudinal components enters only from
the Regge factors, so that the integration over αi and βi can be explicitly performed. In
order to present the discontinuities in a compact way it is convenient to use the operator
notations in the transverse momentum and colour space. We will use also notations which
accumulate all quantum numbers. Thus, 〈GiGj| and |GiGj〉 are bra– and ket–vectors for
the t–channel states of two Reggeized gluons with transverse momenta qi⊥ and qj⊥ and
colour indices ci and cj correspondingly. It is convenient to distinguish the states |GiGj〉
and |GjGi〉. We will associate the first of them with the case when the Reggeon Gi is
contained in the amplitude with initial particles (in the left part of Fig.6), and the second
with the case when it is contained in the amplitude with final particles (in the right part
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of Fig.6). It is convenient to introduce the scalar product

〈GiGj |G
′
iG

′
j〉 = q2

i⊥q
2
j⊥δ(qi⊥ − r′i⊥)δ(qj⊥ − q′j⊥)δcic′i

δcjc′
j
. (42)

These states are complete, and with the scalar product (42) the completeness means

〈Ψ|Φ〉 =
∫
dD−2q1⊥d

D−2q2⊥
q2
1⊥q

2
2⊥

〈Ψ|G1G2〉〈G1G2|Φ〉. (43)

In these notations the discontinuity is presented in the form (see Fig.7):

δ(~qA − ~qB)ℑsA
A′B′

AB =
s

(2π)D−2
〈A′Ā|eY K̂ 1

~̂q
2

1 ~̂q
2

2

|B̄′B〉 , (44)

where qA = pA′ − pA, qB = pB − pB′ , 〈A′Ā| and |B̄′B〉 are the t–channel states

pA pA′

ΦA′A

q1 q2

q′1 q′2

G

pB pB′
ΦB′B

Figure 7: Schematic representation of the process A+B → A′ + A′.

representing impact factors of scattering particles, Y = ln(s/s0) , s0 is an energy scale,
and K̂ is the BFKL kernel. At that

〈G1G2|B̄
′B〉 = δ(~qB − ~q1 − ~q2)Φ

c1c2
B′B(~q1, ~q2) , (45)

〈A′Ā|G1G2〉 = δ(~qA − ~q1 − ~q2)Φ
c1c2
A′A(~q1, ~q2) , (46)

where the impact factors Φ are expressed in terms of the Reggeon vertices . In the LO
the expressions are quite simple (cf. (38)):

Φc1c2
A′A(~q1, ~q2) =

∑

Ã

Γc1
ÃA

Γc2
A′Ã

, Φc1c2
B′B(~q1, ~q2) =

∑

B̃

Γc1
B̃B

Γc2
B′B̃

. (47)

In the NLO the impact factors are defined according to [33].
The kernel K̂ is given by the sum of “virtual” and “real” parts:

K̂ = Ω̂ + K̂r . (48)
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The“virtual” part comes from the Regge factors and is expressed in terms of the trajec-
tories of two interacting Reggeized gluons:

Ω̂ = ω̂1 + ω̂2 . (49)

In the momentum space

〈Gi|ω̂i|G
′
i〉 = δ(qi⊥ − q′i⊥)δcic′i

ω(q2
⊥), (50)

where ω(q2
⊥) is the gluon Regge trajectory. The“real” part K̂r comes from convolutions

of the RRP vertices. In the LO only gluons are produced, so that

〈G1,G2|K̂r|G
′
1,G

′
2〉 = δ(~q1 + ~q2 − ~q ′

1 − ~q ′
2 )
∑

a

γa
c1c′

1
(q1, q

′
1)
(
γa

c2c′
2
(q2, q

′
2)
)∗

, (51)

where the RRP vertices γa
cc′ for gluon production are given in (31) and the sum goes over

gluon colours and polarizations.
Let us introduce the operators P̂R for projection of the two-Reggeon colour states on

the irreducible representations R of the colour group and use the decomposition

〈G1,G2|K̂r|G
′
1,G

′
2〉 = δ(~q1 + ~q2 − ~q ′

1 − ~q ′
2)
∑

R

〈c1c2|P̂R|c
′
1c

′
2〉2(2π)D−1K(R)

r (~q1, ~q
′
1; ~q) . (52)

The most interesting representations are the singlet (Pomeron) and antisymmetrical octet
(Reggeized gluon) representations. For the first of them

〈c1c2|P̂0|c
′
1c

′
2〉 =

δc1c2δc′1c′
2

N2
c − 1

(53)

and for the second

〈c1c2|P̂8|c
′
1c

′
2〉 =

fac1c2fac′
1
c′
2

Nc

. (54)

Using the decomposition

T a
c1c′

1
(T a

c2c′
2
)∗ =

∑

R

cR〈c1c2|P̂R|c
′
1c

′
2〉 , (55)

one obtains from (51), (52)

K(R)
r (~q1, ~q

′
1 ; ~q) =

g2cR
(2π)D−1

(
~q 2
1 ~q

′ 2
2 + ~q 2

2 ~q
′ 2
1

(~q1 − ~q ′
1 )2

− ~q 2

)

. (56)

For the singlet and octet representations

c0 = Nc, c8 =
Nc

2
. (57)

In the NLO the kernels K(R)
r are defined according to [33]. In the particular case of the

forward scattering in the LO

Kr(~q1, ~q
′

1 ) =
K(0)

r (~q1, ~q
′
1 ;~0)

~q 2
1 ~q

′ 2
1

=
g2Nc

(2π)D−1

2

(~q1 − ~q ′
1 )2

. (58)
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Taken separately, the virtual and real contributions to the kernel lead to infrared singu-
larities. But in the singlet (Pomeron) channel the singularities cancel each other. For the
forward LO kernel

K(~q1, ~q
′
1 ) = 2ω(−~q 2

1 )δ(~q1 − ~q ′
1 ) + Kr(~q1, ~q

′
1) (59)

we have ∫
dD−2q2 K(~q1, ~q2)(~q

2
2 )γ−1 =

Ncαs

π
χ(γ)(~q 2

1 )γ−1, (60)

where
χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) , ψ(γ) = Γ′(γ)/Γ(γ) . (61)

The set of functions (~q 2
2 )γ−1 with γ = 1/2+ iν, −∞ < ν <∞ is complete. The maximal

value of χB(γ) is χ(1/2) = 4 ln 2, that corresponds to the Pomeron intercept (4).

5 Conclusion

In this lecture I could give only the foundation of the BFKL theory. The bulk of the lecture
was devoted to the gluon Reggeization, which is the corner stone of the BFKL approach.
The Reggeization determines QCD amplitudes with the gluon quantum numbers in the
t–channels in the multi-Regge kinematics. Unfortunately, present status of the theory for
amplitudes with other quantum numbers remained almost untouched.

Now the BFKL approach is well developed in the next-to-leading approximation. For
the forward case (t = 0 and the vacuum quantum numbers in the t-channel) BFKL kernel
was found at NLO about ten years ago [37], [38]. Applications of this kernel are discussed
in the lectures of Alessandro Papa [39] and Augustin Sabio Vera [40].

However, the BFKL approach is not limited to the forward case. From the beginning
it was developed for arbitrary t and for all possible t-channel colour states. The forward
kernel can carry only restrictive information about the BFKL dynamics. Moreover, the
non-forward case has an advantage of smaller sensitivity to large-distance contributions,

since the diffusion in the infrared region is limited by
√
|t|. Now the BFKL kernel is

known also for the non-forward case [41].
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